SEKOLAH BUKIT SION

IGCSE Mock Examination 2021

STUDENT

 NAME

0580 MATHEMATICS (PAPER 4)

Year 10/Year 11
12 April 2021
2 hours
Additional Materials:

- Scientific Calculator
- Ruler
- Graphing Paper

READ THESE INSTRUCTIONS FIRST

Write your name, exam number and grade on all the work you hand in.
Write in dark blue or black pen.
Use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 100.

QUESTION 01

The fares for a train journey are shown in the table below.

From London to Marseille	Standard fare	Premier fare
Adult	$\$ 84$	$\$ 140$
Child	$\$ 60$	$\$ 96$

(a) For the standard fare, write the ratio adult fare: child fare in its simplest form.
$84: 60$
Answer:
(b) For an adult, find the percentage increase in the cost of the standard fare to the premier fare.

$$
\frac{140-84}{84} \times 100 \%=\frac{56}{84} \times 100 \%
$$

Answer:

$$
\begin{equation*}
66 \frac{2}{3} \% \tag{3}
\end{equation*}
$$

(c) For one journey from London to Marseille, the ratio

$$
\text { number of adults }: \text { number of children }=11: 2 \text {. }
$$

$$
220: 40
$$

There were 220 adults in total on this journey.

All of the children and 70% of the adults paid the standard fare.
The remaining adults paid the remaining fare.

$$
30^{\circ} V_{8} \times 220=154
$$

Calculate the total of the fares collected from all the adults and children.

$$
\begin{aligned}
& 40 \times \$ 60=2400 \\
& 154 \times \$ 84=12936 \\
& 66 \times \$ 140=9240 \\
& \$ 24576
\end{aligned}
$$

Answer:

$$
\begin{equation*}
\$ 24576 \tag{4}
\end{equation*}
$$

(d) The child's standard fare of $\$ 60$ is 20% more than the child's standard fare last year.

Calculate the child's standard fare last year.

Answer:

QUESTION 02

In the diagram, $B C=4 B D$ and $D A=5 D X . M$ is the midpoint of $A C \cdot \overrightarrow{B D}=\mathbf{a}$ and $\overrightarrow{C M}=2 \mathbf{b}$.
(a) Express, as simple as possible, in terms a and/or \mathbf{b},
(i) $\overrightarrow{D C}$
$3 a$
Answer: \qquad
(ii) $\overrightarrow{D A}$,

$$
\begin{aligned}
& \overrightarrow{A A}=\overrightarrow{B C}+\overrightarrow{C A} \\
& \text { = } 3 \text { + }+4 \text { b }
\end{aligned}
$$

$3 a+4 b$
Answer: \qquad

Answer:
(b) Show that $\overrightarrow{B X}=\frac{4}{5}(2 \mathbf{a}+\mathbf{b})$.

(c) Express $\overrightarrow{B M}$ as simply as possible, in terms of \mathbf{a} and \mathbf{b}.

Answer: \qquad
(d) Find
(i) $\frac{B X}{B M}$,

$$
\frac{\frac{4}{5}}{2}=\frac{4}{10}=\frac{2}{5}
$$

(ii) $\frac{\text { area of } \triangle A B X}{\text { area of } \triangle A M X}$,

Answer:

Answer:

$$
\frac{2}{3}
$$

(iii) $\frac{\text { area of } \triangle A B X}{\text { area of } \triangle A B C}$

QUESTION 03

In the diagram, B is the $(4,0)$ and the equation of $A C$ is $7 y=8 x+56$.
Find the

(a) coordinates of A and of C,

$$
\begin{align*}
& \text { Answer: } \tag{1}\\
& \bigcirc(-7,0) \tag{1}
\end{align*}
$$

(b) equation of line $A B$,

$$
\begin{aligned}
& y=m x+c \\
& y=-2 x+8
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer:en }=-2 \times+\cdots \tag{2}
\end{equation*}
$$

(c) area of triangle $A B C$

Answer:
(d) coordinates of D such that $A B C D$ is a parallelogram.

Answer:

QUESTION 04

The table below shows the time, in seconds, taken by each of 120 boys to solve a puzzle.

	2.5	32.5	37.5	50	80
Time $(t$ seconds)	$20<t \leqslant 30$	$30<t \leqslant 35$	$35<t \leqslant 40$	$40<t \leqslant 60$	$60<t \leqslant 100$
Frequency	38	27	21	16	18
Freq Density	3.8	5.4	4.2	0.8	0.45

(a) Write down the modal class and the median class.

$$
\begin{equation*}
202 t \leq 30 \tag{1}
\end{equation*}
$$

Answer: Modal class:

(b) Calculate an estimate of the mean.

$$
\begin{aligned}
& \bar{x}=\frac{25(38)+32.5(27)+37.5(21)+50(16)+80(18)}{120} \quad 40.5 \mathrm{sec} \\
& \bar{x}=40.4583 \ldots \quad \text { Answer: }
\end{aligned}
$$

(c) On the grid, complete the histogram to show the information in the frequency table.

QUESTION 05

Angelo has a bag containing 3 white counters and x black counters. He takes two counters at random from the bag, without replacement.
(a) Complete the following statement.

The probability that Angelo takes two black counters is

$$
\begin{equation*}
\frac{x}{x+3} \times \frac{x-1}{x+2} \tag{2}
\end{equation*}
$$

(b) The probability that Angelo takes two black counters is $\frac{7}{15}$.
(i) Show that $4 x^{2}-25 x-21=0$.

$$
\begin{aligned}
& \frac{x}{x+3} \cdot \frac{x-1}{x+2}=\frac{7}{15} \\
& 15(x)(x-1)=7(x+3)(x+2) \\
& 15 x^{2}-15 x=7 x^{2}+35 x+42 \\
& \frac{8 x^{2}-50 x-42}{2}=0 \\
& 4 x^{2}-25 x-21=0
\end{aligned}
$$

(ii) Solve by factorization $4 x^{2}-25 x-21=0$.

$$
\begin{gathered}
(4 x+3)(x-7)=0 \\
4 x=-3 \\
x=-\frac{3}{4} \quad x=7
\end{gathered}
$$

$$
\begin{equation*}
\text { Answer: } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{3}
\end{equation*}
$$

(c) Write down the number of black counters in the bag.

$$
\begin{equation*}
\quad 7 \tag{1}
\end{equation*}
$$

Answer:

QUESTION 06

Four posts A, B, C and D mark the boundaries of Martha's garden as shown in the diagram above.
Post D is 16.5 metres away from A.
Post B is 12.4 metres south of D.
C has a bearing of 95° from B.
(a) Write down the bearing of D from A.

$$
\begin{equation*}
064^{\circ} \tag{1}
\end{equation*}
$$

Answer
(b) Write down the bearing of C from D.
127°
Answer:
(c) Find $A B$.

$$
\begin{aligned}
A B & =\sqrt{16.5^{2}+12.4^{2}-2(16.5)(12.4) \cos 64^{\circ}} \\
& =\sqrt{246.6285 \ldots} \\
& =15.7044
\end{aligned}
$$

15.7 m
(d) Calculate the measure of angle $D A B$. Hence, show that the bearing of B from A is 109°, to the nearest degree.

$$
\begin{aligned}
\frac{12.4}{\sin \theta} & =\frac{15.7}{\sin 64} \\
\sin \theta & =\frac{12.4(\sin 64)}{12.4} \\
\theta & =\sin ^{-1}\left(\frac{12.4 \sin 64}{12.4}\right) \\
\theta & =45.225^{\circ}
\end{aligned}
$$

Bearing:

$$
45.2+90^{\circ} V
$$

$$
109^{\circ}
$$

(e) If $B C=18.9 \mathrm{~m}$, show that the total area of Martha's garden is $209 \mathrm{sq} . \mathrm{m}^{2}$, correct to 3 sf .

$$
\begin{aligned}
\text { Tola area } & =A_{1}+A_{2} \\
& =\frac{5}{2}(16.5)(12.4) \sin \left(64+\frac{1}{2} \sin 95(12.4)(18.9)\right. \\
& =91.9466 \ldots+116.734 \ldots \\
& =208.6806 \\
& =209 \text { sq } m .
\end{aligned}
$$

QUESTION 07

Box A contains 5 yellow and 7 white marbles.
Box B contains 9 yellow and 6 white marbles.
A marble is drawn at random from each box.
(a) Complete the probability tree diagram below.

(b) Find the probability of drawing
(i) two marbles of different colours,

$$
\begin{align*}
& \varphi(y w)+P(w) \\
& \frac{5}{12} \times \frac{6}{15}+\frac{7}{12} \times \frac{9}{15} \tag{2}
\end{align*}
$$

Answer:
Answer:
(ii) two non-yellow marbles,

$$
\begin{align*}
& 1-p(y y) \\
& 1-\frac{5}{72} \times \frac{9^{3}}{\sqrt{5}} \tag{2}\\
& 1-\frac{1}{4}
\end{align*}
$$

$$
\text { Answer: } \frac{3}{4}
$$

(iii) a yellow marble from box A given that a white marble was drawn from Box B.

$$
\begin{aligned}
P\left(\frac{y w}{y w+w w}\right) & =\frac{\frac{5}{12} \times \frac{6}{15}}{\frac{1}{6}+\frac{7}{30}} \\
& =\frac{\frac{1}{6}}{\frac{2}{5}}
\end{aligned}
$$

QUESTION 08

$$
1 \mathrm{~cm}: 0.25 \mathrm{~km}
$$

(a) A map is drawn to a scale of 1 cm to 250 m . An airport has an area of $240 \mathrm{~cm}^{2}$ on the map. Find its actual area in km^{2}.

$$
\begin{aligned}
& 1 \mathrm{~cm}^{2}: 0.0625 \mathrm{~km}^{2} \\
& 240 \mathrm{~cm}^{2}=15 \mathrm{~km}^{2}
\end{aligned}
$$

(b) Two similar containers have capacities of $24 \mathrm{~cm}^{3}$ and $375 \mathrm{~cm}^{3}$ respectively. Write down the ratio of their:
(i) heights,

(ii) surface areas.

$$
\begin{aligned}
& 2: 5 \\
& 4: 25
\end{aligned}
$$

QUESTION 09

(a) Complete this table of values for $y=2^{x}-\frac{2}{x}+1$.

\boldsymbol{x}	$\mathbf{- 6}$	$\mathbf{- 5}$	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{- 0 . 2}$	$\mathbf{0}$	$\mathbf{0 . 2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
\boldsymbol{y}	1.35	1.43	1.6	1.79	2.25	3.5	11.87	-	-7.85	1	4	8.3

(b) On the grid, draw the graph of $y=2^{x}-\frac{2}{x}+1$ for $-6 \leq x \leq 3$, using $2 \mathrm{~cm} \rightarrow 2$ units on both axes. [4]

(c) Use your graph to solve $2^{x}-\frac{2}{x}+1=3$.
Answer:

$$
\begin{aligned}
u=-1.20 & \rightarrow-1.30 \\
1.5 & \rightarrow 1.7
\end{aligned}
$$

(d) Write down the equation of the straight line that must be used to be drawn on the given curve to solve $2^{x}-\frac{2}{x}-3=\frac{1}{2} x$. (Line need not be drawn.)

$$
+4+4
$$

$$
2^{x}-\frac{2}{x}-3=\frac{1}{2} x+4
$$

$$
\begin{gathered}
y=\frac{1}{2} x+4 \\
\text { Answer: } \ldots \ldots
\end{gathered}
$$

(e) By drawing a suitable line on your graph, find the gradient of the curve at $x=-3$.

$$
\begin{equation*}
m=\frac{1}{3} \tag{3}
\end{equation*}
$$

QUESTION 10

In a survey, 100 students are asked if they like basketball (B), football (F) and swimming (S). The Venn diagram shows the results.

42 students like swimming.
40 students like one sport.
(a) Find the values of p, q and r.

$$
\begin{equation*}
p=5, q=12, r=1 \tag{3}
\end{equation*}
$$

Answer:
(b) How many students like basketball and swimming but not football?

$$
\begin{array}{r}
12 \\
\text { Answer: } \tag{1}
\end{array}
$$

(c) Find $\mathrm{n}\left((B \cup S) \cap F^{\prime}\right)$

$$
\begin{equation*}
40 \tag{1}
\end{equation*}
$$

Answer:
(d) Two students are chosen at random from those who like basketball.

Find the probability that they each like exactly one other sport.

$$
\begin{equation*}
\frac{37}{74} \times \frac{36}{73} \tag{2}
\end{equation*}
$$

$$
18 / 73
$$

Answer:

QUESTION 11

A sphere with radius $x \mathrm{~cm}$ has a volume of $1000 \mathrm{~cm}^{3}$. Calculate the value of x.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

$$
\begin{gathered}
1000=\frac{4}{3} \pi r^{3} \\
\sqrt[3]{\frac{3000}{4 \pi}}=\sqrt[3]{r^{3}}
\end{gathered}
$$

$$
x=r=6.20
$$

$$
6.20
$$

Answer:

QUESTION 12

The diagram shows information about the final 70 seconds of a car journey.
(a) Find the deceleration of the car.

$$
\begin{equation*}
2 \mathrm{~ms}^{-2} \tag{1}
\end{equation*}
$$

Answer:
(b) Find the distance travelled by the car during the 70 seconds.

$$
\frac{1}{2} \times(60+70) \times 20
$$

$$
\begin{align*}
& 1300 \mathrm{~m} \\
& \text { Answer: } \tag{3}
\end{align*}
$$

