

SEKOLAH BUKIT SION

IGCSE Mock Examination 2021

STUDENT NAME		
EXAM NUMBER	CLASS	

0606 ADDITIONAL MATHEMATICS (PAPER 1)

Year 10

10 April 2021

1 hour 30 minutes

Additional Materials:

- Scientific Calculator
- Ruler
- Graphing Paper

READ THESE INSTRUCTIONS FIRST

Write your name, exam number and grade on all the work you hand in.

Write in dark blue or black pen.

Use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

1 (a) Sketch the graph of y = |4x - 2| on the axes below, showing the coordinates of the points where the graph meets the axes.

(b) Solve the equation |4x - 2| = x.

[3]

Question	Answer	Marks	AO Element	Notes	Guidance
1(a)	Idea of modulus correct	B1		Two straight lines above and touching <i>x</i> -axis	
	$\frac{1}{2}$ indicated on x-axis	B1		Must be a sketch	
	2 indicated on y-axis	B1		Must be a sketch	
1(b)	$\frac{2}{3}$ (0.667)	B1		0.67 is B0	
	Solve $4x - 2 = -x$ or $(4x - 2)^2 = x^2$	M1		As far as $x =$ numerical value	
	$\frac{2}{5}$	A1		SC: If drawn then B1 , B2 for exact answers only	
	-	I		I	[Total: 6

2 Find the equation of the normal to the curve $y = \sqrt{8x + 5}$ at the point where $x = \frac{1}{2}$, giving your answer in the form of ax + by + c = 0, where *a*, *b* and *c* are integers.

[5]

Question	Answer	Marks	AO Element	Notes	Guidance	Close
1	M1 $\frac{dy}{dx} = k(8x + 5)^{-\frac{1}{2}}$ A1 $\frac{dy}{dx} = 4(8x + 5)^{-\frac{1}{2}}$ B1 When $x = \frac{1}{2}$, $y = 3$ M1 Normal: $y - 3 = -\frac{3}{4}\left(x - \frac{1}{2}\right)$ A1 $6x + 8y - 27 = 0$	5		For attempt to differentiate, must be in the form $k(8x + 5)^{-\frac{1}{2}}$ For attempt at the normal when $x = \frac{1}{2}$, using correct process for <i>their</i> $\frac{dy}{dx}$ and <i>their</i> y.		
					[To	tal: 5]

3 Find the values of k for which the line y = kx - 3 and the curve $y = 2x^2 + 3x + k$ do not intersect. [5]

Question	Answer	Marks	AO Element	Notes	Guidance
1	M1 $2x^2 + 3x + k = kx - 3$	5		For an attempt to equate and simplify to a 3 term quadratic equation, allow an error in one term	
	A1 $2x^2 + (3-k)x + (k+3) = 0$				
	M1 $(3-k)^2 - 4 \times 2 \times (k+3)$			For attempt to use the discriminant, allow previous error, leading to a quadratic equation in terms of k	
	A1 $k^2 - 14k - 15 = 0$ giving critical values of -1 and 15			For critical values	
	A1 $-1 < k < 15$				

4 Find the values of x for which $x (6x + 7) \ge 20$.

Question	Answer	Marks	AO Element	Notes	Guidance
1	M1 $6x^2 + 7x - 20$ [*0] A1 Critical values $\frac{4}{3}$, $-\frac{5}{2}$ A1 $x \le -\frac{5}{2}$ or $x \ge \frac{4}{3}$ final answer	3		where * may be any inequality sign or = FT <i>their</i> critical values using outside regions	
					[Total: 3]

5 The functions f and g are defined for real values of x by

$$f(x) = \sqrt{x - 1} - 3$$
 for $x > 1$,

$$g(x) = \frac{x-2}{2x-3}$$
 for $x > 2$.

(a) Find gf(37).

- **(b)** Find an expression for $f^{-1}(x)$.
- (c) Find an expression for $g^{-1}(x)$.

Question	Answer	Marks	AO Element	Notes	Guidance
1(a)	f (37) = 3 or gf (x) = $\frac{\sqrt{x-1} - 3 - 2}{2(\sqrt{x-1} - 3) - 3}$	B1			
	$gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1			
1(b)	$y = \sqrt{x - 1} - 3 \rightarrow (y + 3)^2 = x - $	1 M1		Rearrange and square in any order	
	$(x+3)^2 + 1 = f^{-1}(x)$ oe isw	A1		Interchange <i>x</i> and <i>y</i> and complete	
1(c)	$y = \frac{x-2}{2x-3}$ $2xy - 3y = x - 2 \rightarrow 2xy - x = 3y$	M1 - 2		Multiply and collect like terms	
	$\frac{3x-2}{2x-1} = g^{-1}(x) \text{ oe}$	A1		Interchange and complete Mark final answer	
					[Total: 6]

[3]

[2]

[2]

[2]

6 Solve.

(a)
$$2(5)^{2z} + 5^z - 1 = 0$$
.

Question	Answer	Marks	AO Element	Notes	Guidance
1	$(2(5^z) - 1)(5^z + 1) = 0$	M1		M1 for solution of quadratic	
	leading to 2. $5^z = 1$ ($5^z = -1$)	A1		A1 for correct solution	
	$5^z = 0.5$	M1		DM1 for correct attempt to solve $2.5^z = k$, where k is positive	
	$z = \frac{\log 0.5}{\log 5}$ or $z = -0.431$ or better	A1		A1 must have one solution only	
					[Total: 4]

(b) $1 + 2\log_5 x = \log_5(18x - 9)$

Question Answer Marks **AO Element** Notes Guidance 1 $1 + 2\log_5 x = \log_5 (18x - 9)$ **B2** B1 for dealing with '1', $\log_5 5 + \log_5 x^2 = \log_5 (18x - 9)$ B1 for dealing with '2' M1 $\log_5 5x^2 = \log_5 (18x - 9)$ for a correct use of addition or subtraction of logarithms $5x^2 = 18x - 9$ **M1** DM1 for elimination of logarithms to form a 3 (5x-3)(x-3) = 0term quadratic and for solution of quadratic $x=\frac{3}{5}\,,\;3$ A1 for both x values [Total: 5]

[4]

7

A curve has equation $y = (3x - 5)^3 - 2x$.

(a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. [4]

(b) Find the exact value of the *x*-coordinate of each of the stationary points of the curve. [2]

(c) Use the second derivative test to determine the nature of each of the stationary points. [2]

Question	Answer	Marks	AO Element	Notes	Guidance
1(a)	B2 $9(3x-5)^2 - 2$ isw B2 $54(3x-5)^{[1]}$ isw	4		B1 for $k(3x-5)^2$ $k \neq 9$ seen B1 for $k(3x-5)^{[1]}$ $k \neq 54$ seen	
1(b)	M1 Solves their $9(3x-5)^2 - 2 = 0$ A1 $[x =]\frac{5}{3} \pm \frac{\sqrt{2}}{9}$ or exact equivalent	2			
1(c)	M1 Substitutes their $\frac{5}{3} + \frac{\sqrt{2}}{9}$ or their $\frac{5}{3} - \frac{\sqrt{2}}{9}$ into their $54(3x - 5)^{[1]}$ and considers sign of result A1 When $x = \frac{5}{3} + \frac{\sqrt{2}}{9} - \frac{d^2 y}{dx^2} > 0$ so minimum and when $x = \frac{5}{3} - \frac{\sqrt{2}}{9} - \frac{d^2 y}{dx^2} < 0$ so maximum	2			

The position vectors of points A and B relative to an origin O are **a** and **b** respectively. The point P is such that $\overrightarrow{OP} = \mu \overrightarrow{OA}$. The point Q is such that $\overrightarrow{OQ} = \lambda \overrightarrow{OB}$. The lines AQ and BP intersect at the point R.

- (a) Express \overrightarrow{AQ} in terms of λ , **a** and **b**. [1]
- (b) Express \overrightarrow{BP} in terms of μ , **a** and **b**. [1]

It is given that $3\overrightarrow{AR} = \overrightarrow{AQ}$ and $8\overrightarrow{BR} = 7\overrightarrow{BP}$.

(c) Express \overrightarrow{OR} in terms of λ , **a** and **b**. [2]

[2]

[3]

- (d) Express \overrightarrow{OR} in terms of μ , **a** and **b**.
- (e) Hence find the value of μ and λ .

Question	Answer	Marks	AO Element	Notes	Guidance	Close
1(a)	$\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$	B1				
1(b)	$\overrightarrow{BP} = \mu \mathbf{a} - \mathbf{b}$	B1				
1(c)	$\overrightarrow{OR} = \mathbf{a} + \frac{1}{3} (\lambda \mathbf{b} - \mathbf{a}) \text{ or}$ $\lambda \mathbf{b} - \frac{2}{3} (\lambda \mathbf{b} - \mathbf{a})$	М1		for $\mathbf{a} + \frac{1}{3}$ their (a)		Mark schen
	$=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$	A1		Allow unsimplified		
1(d)	$\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or}$ $\mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$	М1		for $\mathbf{b} + \frac{7}{8}$ their (b)		
	$=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$	A1		Allow unsimplified		
1(e)	$\frac{2}{3}\mathbf{a} + \frac{1}{3}\lambda\mathbf{b} = \frac{1}{8}\mathbf{b} + \frac{7}{8}\mu\mathbf{a}$	M1		for equating (c) and (d) and then equating like vectors		
	$\frac{2}{3} = \frac{7}{8} \mu, \ \mu = \frac{16}{21}$ Allow 0.762	A1				
	$\frac{1}{3} \lambda = \frac{1}{8}, \ \lambda = \frac{3}{8}$ Allow 0.375	A1				

9 CHOOSE/ANSWER ONLY ONE.

		- ² <i>y</i>	1		
(a)	Given that $7^x \times 49^y = 1$	and $5^{5x} \times 125^{3}$	$=\frac{1}{2\pi}$, calcula	te the value	of x and y .
` '			25		

Question	Answer	Marks	AO Element	Notes	Guidance
1	M1 Either $7^{x} \times 7^{2y}$ or $49^{\frac{x}{2}} \times 49^{y}$ or $5^{5x} \times 5^{2y}$ or $25^{\frac{5x}{2}} \times 25^{y}$	5		For expressing the terms on the left hand side of either one of the 2 equations in terms of powers of 7, 49, 5 or 25	
	A1 $7^x \times 7^{2y} = 7^0$ or $49^{\frac{x}{2}} \times 49^y = 49^0$				
	A1 $5^{5x} \times 5^{2y} = 5^{-2}$ or $25^{\frac{5x}{2}} \times 25^{y} = 25^{-1}$				
	M1 leading to $x + 2y = 0$ and $5x + 2y = -2$			For attempt to solve two linear equations, with integer coefficients and constants, in terms of x and y	
	A1 $x = -\frac{1}{2}, y = \frac{1}{4}$				

[4]

(b) Without using a calculator, express $\frac{(\sqrt{5}-3)^2}{\sqrt{5}+1}$ in the form of $p\sqrt{5}+q$, [4]

Question	Answer	Marks	AO Element	Notes	Guidance
1	M1 $(\sqrt{5} - 3)^2 = 5 + 9 - 2(3)\sqrt{5}$	4			
	M1 $\frac{their\left(14-6\sqrt{5}\right)}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1}$			Attempts to rationalise or forms a pair of simultaneous equations e.g. 5p + q = 14, $p + q = -6$	
	$\frac{\mathbf{M1}}{\frac{their\left(14\sqrt{5} - 30 - 14 + 6\sqrt{5}\right)}{5 - 1}}$			multiplies out; numerator must have at least 3 terms; condone one sign error in numerator; denominator may be 4 or $5 - \sqrt{5} + \sqrt{5} - 1$ or solves <i>their</i> simultaneous equations to find one unknown	
	A1 5√5 – 11			or $p = 5$, $q = -11$	

- 10 The polynomial p(x) = (2x 1)(x + k) 12, where k is a constant.
 - (a) Write down the value of p(-k). [1]
 - (b) When p(x) is divided by (x + 3), the remainder is 23.Find the value of k.
 - (c) Using your value of k in part (b), show that the equation p(x) = -25 has no real solutions. [3]

Question	Answer	Marks	AO Element	Notes	Guidance
1(a)	B1 –12	1			
1(b)	M1 (2 × -3 - 1) (k - 3) - 12 = 23 oe or 2(-3) ² + (2k - 1) (-3) - k - 12 = 23 A1 k = -2	2			
1(c)	M1 $(2x - 1) (x - 2) - 12 = -25$ $2x^2 - 5x + 15 = 0$ M1 Discriminant: $25 - (4 \times 2 \times 15)$ = -95 A1 which is < 0 so no real	3		expansion and simplification to a 3 term quadratic equation equated to zero, using <i>their k</i> . using discriminant for their three term quadratic equation cao for correct	
	solutions			discriminant and correct conclusion	[Total: 6]

- END OF EXAMINATION -