\square
\square

CENTRE ID

0606 ADDITIONAL MATHEMATICS (PAPER 2)

Additional Materials:

- Scientific Calculator
- Ruler

READ THESE INSTRUCTIONS FIRST

Write your name, exam number and grade on all the work you hand in.
Write in dark blue or black pen.
Use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80.

Score:

1 (a) Differentiate $y=\left(3 x^{2}-1\right)^{-\frac{1}{3}}$ with respect to x.

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{1}{3}\left(3 x^{2}-1\right)^{-4 / 3} \cdot 6 x \\
& \frac{d y}{d x}=-2 x\left(3 x^{2}-1\right)^{-4 / 3}+
\end{aligned}
$$

(b) Find the approximate change in y as x increases from $\sqrt{3}$ to $\sqrt{3}+p$, where p is small.

$$
\begin{aligned}
\delta y & =-2 \sqrt{3}(8)^{-4 / 3} \cdot p \\
& =-2 \sqrt{3}\left(\frac{1}{24}\right) \cdot p \\
\delta y & =\frac{p \sqrt{3}}{-8}
\end{aligned}
$$

(c) Find the equation of the normal to the curve $y=\left(3 x^{2}-1\right)^{-\frac{1}{3}}$ at the point where $x=\sqrt{3}$.
when $x=\sqrt{3}, y=\frac{1}{2}$

$$
\begin{aligned}
& m_{i}=\frac{\sqrt{3}}{-8} \quad m_{n}=\frac{8}{\sqrt{3}}=\frac{8 \sqrt{3}}{3} \\
& y=\frac{8 \sqrt{3}}{3} x+c \quad \therefore y=\frac{8}{\sqrt{3}} x-\frac{15}{2} \\
& \frac{1}{2}=\frac{8 \sqrt{3}}{3}(\sqrt{3})+c \\
& \frac{1}{2}=8+c \Rightarrow-\frac{15}{2}
\end{aligned}
$$

Question	Answer	Marks	AO Element	Notes	Guidar	Close
1(a)	$\begin{aligned} & \text { M1 } \frac{\mathrm{d} y}{\mathrm{~d} x}=k x\left(3 x^{2}-1\right)^{-\frac{4}{3}} \\ & \text { A1 } \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{3} \times 6 x\left(3 x^{2}-1\right)^{-\frac{1}{3}} \end{aligned}$	2				
1(b)	B1 When $x=\sqrt{3}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{\sqrt{3}}{8}$ $-\frac{\sqrt{3}}{8} p$ or $-0.217 p$	1		FT on their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ of the form $k x\left(3 x^{2}-1\right)^{-\frac{4}{3}}$		
1(c)	B1 When $x=\sqrt{3}, y=\frac{1}{2}$ M1 A1 Normal: $y-\frac{1}{2}=\frac{8}{\sqrt{3}}(x-\sqrt{3})$	3		for $y=\frac{1}{2}$ M1 Dep on M1 in part (a). An equation of the normal using their normal gradient, $\sqrt{3}$ and their y A1 allow unsimplified		
[Total: 6]						

2 Without using a calculator, express $\frac{(\sqrt{5}-3)^{2}}{\sqrt{5}+1}$ in the form of $p \sqrt{5}+q$, where p and q are integers.

$\frac{(\sqrt{5}-3)^{2}}{\sqrt{5}+1}$
$\frac{5-6 \sqrt{5}+9}{\sqrt{5}+1}$

$\frac{14-6 \sqrt{5}}{\sqrt{5}+1} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1}$
$\frac{14 \sqrt{5}-14-30+6 \sqrt{5}}{4}$

3 Find the values of k for which the equation $(k-1) x^{2}+k x-k=0$ has real distinct roots.

| Question | Answer | Marks | AO Element | Notes |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | B1 $k^{2}-4(k-1)(-k)$ oe
 A1 Correct critical values $0,0.8$
 oe
 A1 $k<0, k>0.8$ oe | $\mathbf{4}$ | | Guidance |

4 Given that $4 x^{4}-12 x^{3}-b^{2} x^{2}-7 b x-2$ is exactly divisible by $2 x+b$,
(i) show that $3 b^{3}+7 b^{2}-4=0$,

$$
\begin{aligned}
& \begin{array}{r}
2 x+b=0 \\
2 x=-b \\
x-\frac{b}{2}
\end{array} \left\lvert\, \begin{array}{l}
4\left(\frac{-b}{2}\right)^{4}-12\left(-\frac{b}{2}\right)^{3}-b^{2}\left(\frac{-b}{2}\right)^{2}-7 b\left(-\frac{b}{2}\right)-2=0 \\
2\left(\frac{b^{4}}{16}\right)_{4}+r^{3}\left(\frac{b^{3}}{8}\right)-b^{2}\left(\frac{b^{2}}{4}\right)+\frac{7 b^{2}}{2}-2=0 \\
2 \times\left(\frac{b^{4}}{4}+\frac{3}{2} b^{3}-\frac{b^{4}}{4}+\frac{7 b^{2}}{2}-2=0\right) \times 2 \\
3 b^{3}+7 b^{2}-4=0 \text { shown }
\end{array}\right.
\end{aligned}
$$

(ii) find the possible values of b.

$$
\begin{gathered}
\text {-2) } \begin{array}{c}
3 \\
\begin{array}{ccc}
7 & 0 & -4 \\
-6 & -2 & 4
\end{array} \\
\begin{array}{lll}
1 & -2 & 0
\end{array}(3 x-2)(x+1) \\
(3 x-2)(x+1)=0 \\
x=-2, \frac{2}{3}>-1
\end{array}, \begin{array}{l}
3 x^{2}+x-2 \\
(3 x-2)(x)
\end{array}
\end{gathered}
$$

$5 \quad$ The points A and B have coordinates $(p, 3)$ and $(1,4)$ respectively and the line L has equation $3 x+y=2$.
(a) Given that the gradient of $A B$ is $\frac{1}{3}$, find the value of p.
(b) Show that L is the perpendicular bisector of $A B$.
(c) Given that $C(q,-10)$ lies on L, find the value of q.
(d) Find the area of triangle $A B C$.

(d)

$$
\begin{aligned}
A & =\frac{1}{2}\left|\begin{array}{ccc}
-2 & 1 & 4 \\
3 & -2 \\
4 & -10 & -2
\end{array}\right| \\
A & =\frac{1}{2}|(-8-10+n)-(3+16+20)| \\
& =\frac{1}{2}|(-45)|=22.5 \text { sq units }
\end{aligned}
$$

6 Show that
(a) $\frac{\operatorname{cosec} \theta-\cot \theta}{\sin \theta}=\frac{1}{1+\cos \theta}$.
[4]

Question	Answer	Marks	AO Element	Notes	Guidan	Close
1(a)	$\text { M2 } \frac{1}{\sin \theta}\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)$ M1 $\frac{1-\cos \theta}{1-\cos ^{2} \theta}$ A1 $\begin{array}{r} \frac{1-\cos \theta}{(1-\cos \theta)(1}+\begin{array}{c} \cos \theta) \\ =\frac{1}{1+\cos \theta} \end{array} \text { } \end{array}$	4		M1 for either $\begin{aligned} & \frac{\operatorname{cosec} \theta-\cot \theta}{\sin \theta}= \\ & \frac{1}{\sin \theta}\left(\operatorname{cosec} \theta-\frac{\cos \theta}{\sin \theta}\right) \end{aligned}$ or $\begin{aligned} & \frac{\operatorname{cosec} \theta-\cot \theta}{\sin \theta}= \\ & \frac{1}{\sin \theta}\left(\frac{1}{\sin \theta}-\cot \theta\right) \end{aligned}$		

(b) $(1+\sec \theta)(\operatorname{cosec} \theta-\cot \theta)=\tan \theta$.

7 Solve $6 \sin ^{2} x-13 \cos x=1 \quad$ for $0^{\circ} \leq x \leq 360^{\circ}$.

Question	Answer	Marks	AO Element	Notes	Guidance
1	B1 $6\left(1-\cos ^{2} x\right)-13 \cos x=1$ oe M1 Solves or factorises their 3-term quadratic A2 70.5 and 289.5	4			

8 Solve.
(a) $1+\lg (8-x)=\lg (3 x+2)$

$$
\begin{aligned}
\lg 10+\lg (8-x) & =\lg (3 x+2) \\
\lg 10(8-x) & =\lg (3 x+2) \\
50-10 x & =3 x+2 \\
78 & =13 x \\
x & =6
\end{aligned}
$$

(b) $\left.\log _{4}\left(3 y^{2}-10\right)=2 \log _{4} y-1\right)+\frac{1}{2}$

Question	Answer	Marks	AO Element	Notes	Guidan	Close
	M1 $y^{2}+4 y-12=0$ A1 $y=2$ only			Dep on first and third B marks. simplification to a 3 term quadratic		
[Total: 5]						

The diagram shows a sector, $A O B$, of a circle centre O, radius 12 cm .
Angle $A O B=0.9$ radians.
The point C lies on $O A$ such that $O C=C B$.
(a) Show that $O C=9.65 \mathrm{~cm}$ correct to 3 significant figures.
(b) Find the perimeter of the shaded region.
(c) Calculate the area of the shaded region.

Question	Answer	Marks	AO Element	Notes	Guidance
1(c)	Area $=$ $\left(\frac{1}{2} \times 12^{2} \times 0.9\right)-\left(\frac{1}{2} \times 9.652^{2}\right.$	$\left.\begin{array}{c} \text { B2 } \\ \tau-1.8) \end{array}\right)$		B1 for area of sector, allow unsimplified B1 for area of isosceles triangle $\begin{aligned} & \frac{1}{2}(9.65(2 \ldots))^{2} \sin (\pi- \\ & \text { or } \frac{1}{2}(12 \times 6 \tan 0.9) \text { or } \\ & \frac{1}{2}(12 \times 9.65(2 \ldots) \times \sin \end{aligned}$ allow unsimplified.	
	$\begin{aligned} & 64.8-45.36 \\ & =19.4 \text { to } 19.5 \end{aligned}$ Alternative solution: $\begin{aligned} & \frac{1}{2}(12-9.652) \times 9.652 \times \sin 1.8 \\ & (\text { B1 }) \\ & \frac{1}{2} 12^{2}(0.9-\sin 0.9)(\mathrm{B} 1) \\ & 11.04+8.40 \\ & \text { Area }=19.4 \text { to } 19.5(\mathrm{~B} 1) \end{aligned}$	B1		for answer in range 19.4 to 19.5 B1 for area of triangle $A C B$, unsimplified B1 for area of segment, unsimplified B1 for answer in range 19.4 to 19.5	

$O P Q R$ is a parallelogram.
O is the origin. $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O R}=\mathbf{r}$.
M is the midpoint of $P Q$ and L is on $O R$ such that $O L: L R=2: 1$.
The line $P L$ is extended to the point S.
(a) Find, in terms of \mathbf{p} and \mathbf{r}, in their simplest forms,
(i) $\quad \overrightarrow{O Q}$

(ii) $\overrightarrow{P R}$,

Answer:
(iii) $\overrightarrow{P L}$,

$$
\begin{equation*}
-f+\frac{2}{3} r \tag{1}
\end{equation*}
$$

(iv) The position vector of M.

Answer:
(b) $P L S$ is a straight line and $P S=\frac{3}{2} P L$.

Find, in terms of \mathbf{p} and/or \mathbf{r}, in their simplest forms,
(i) $\overrightarrow{P S}$

$$
\begin{equation*}
-\frac{3}{2} f+r \tag{1}
\end{equation*}
$$

Answer:
(ii) $\begin{aligned} \overrightarrow{Q S} \quad Q & =Q+\cdots \\ & =-4+\frac{3}{2}+4\end{aligned}$

$$
\begin{equation*}
=-x+\frac{-3}{2} \rho+x \tag{2}
\end{equation*}
$$

Answer:
$f=\frac{3}{2}$

Answer

11 CHOOSE/ANSWER ONLY 1

EITHER

It is given that $y=\left(x^{2}+1\right)(2 x-3)^{\frac{1}{2}}$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{P x^{2}+Q x+1}{(2 x-3)^{\frac{1}{2}}}$, where P and Q are integers.

Question	Answer	Marks	AO Element	Notes	Guidan	Close
1(a)	M1 B1 A1 $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}+1\right)(2 x-3)^{-\frac{1}{2}}$ Mark scheme M1 $=(2 x-3)^{-\frac{1}{2}}\left(x^{2}+1+2 x(2 x-3)\right)$ $\mathbf{A 1}=\frac{5 x^{2}-6 x+1}{(2 x-3)^{\frac{1}{2}}}$	5		M1 for differentiation of a product B1 for $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{dx}}(2 x-3)^{\frac{1}{2}} \\ &=\frac{1}{2} \times 2(2 x-3)^{-\frac{1}{2}} \end{aligned}$ oe A1 all else correct i.e. $\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}\right. & +1) \mathrm{f}(x) \\ & +2 x(2 x-3)^{\frac{1}{2}} \end{aligned}$ correctly taking out a factor of $(2 x-3)^{-\frac{1}{2}}$ or correctly using $(2 x-3)^{\frac{1}{2}}$ as denominator		

(b) Hence find the equation of the normal to the curve $y=\left(x^{2}+1\right)(2 x-3)^{\frac{1}{2}}$ at the point $x=2$, giving your answer in the form $a x+b y+\mathrm{c}=0$, where a, b, and c are integers.

Question	Answer	Marks	AO Element	Notes	Guidan	Close
1(b)	B1 When $x=2, y=5$ M1 $\frac{\mathrm{d} y}{\mathrm{~d} x}=9$, so gradient of normal $=-\frac{1}{9}$ M1 Equation of normal $y-5=-\frac{1}{9}(x-2)$ A1 $x+9 y-47=0$ or $-x-9 y+47=0$	4		substitution to obtain gradient and correct method for gradient of normal DepM1 for equation of normal Must be in this form		
[Total: 9]						

OR
A closed cylinder has base radius r, height h and volume V. It is given that the total surface area of the cylinder is 600π and that V, r and h can vary.
(a) Show that $V=300 \pi r-\pi r^{3}$.
(b) Find the stationary value of V and determine its nature.

(b)

$$
V=2000 \pi v
$$

$$
\begin{aligned}
& V=300 \pi r-\pi r^{3} \\
& v^{\prime}=300 \pi \pi-3 \pi r^{2}=0 \mathrm{~V} \quad V^{\prime \prime}=-6 \pi r \\
& 300=3 \pi r^{2} \\
& \begin{aligned}
3 r^{2} & =300 \\
r^{2} & =100
\end{aligned} \\
& r=10 \quad V \\
& \text { @ } r=10,-6 \pi(10) \\
& v^{\prime \prime}=-60 \pi
\end{aligned}
$$

