

SEKOLAH BUKIT SION

IGCSE Mock Examination 2021

STUDENT NAME		
examinee Number	CENTRE ID	

0606 ADDITIONAL MATHEMATICS (PAPER 2)

Year 10

10 April 2021

2 hours

Additional Materials:

- Scientific Calculator
- Ruler

READ THESE INSTRUCTIONS FIRST

Write your name, exam number and grade on all the work you hand in.

Write in dark blue or black pen.

Use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

Score :		

1 (a) Differentiate $y = (3x^2 - 1)^{-\frac{1}{3}}$ with respect to x.

(b) Find the approximate change in y as x increases from $\sqrt{3}$ to $\sqrt{3} + p$, where p is small. [1]

(c) Find the equation of the normal to the curve $y = (3x^2 - 1)^{-\frac{1}{3}}$ at the point where $x = \sqrt{3}$. [3]

when
$$x = \sqrt{3}, y = \frac{1}{2}$$

 $m_{\overline{t}} = \frac{\sqrt{3}}{-8}$ $M_n = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3}$
 $y = \frac{8\sqrt{3}}{3}x + C$ $\therefore y = \frac{8}{\sqrt{3}}x - \frac{15}{2}$
 $\frac{1}{2} = \frac{8\sqrt{3}}{3}(\sqrt{6}) + C$ $= \frac{15}{2}$

Question	Answer	Marks	AO Element	Notes	Guida	Close
1(a)	M1 $\frac{dy}{dx} = kx(3x^2 - 1)^{-\frac{4}{3}}$ A1 $\frac{dy}{dx} = -\frac{1}{3} \times 6x(3x^2 - 1)^{-\frac{4}{3}}$	2			l	
1(b)	B1 When $x = \sqrt{3}$, $\frac{dy}{dx} = -\frac{\sqrt{3}}{8}$ $-\frac{\sqrt{3}}{8}p$ or $-0.217p$	1		FT on their $\frac{dy}{dx}$ of the form $kx(3x^2 - 1)^{-\frac{4}{3}}$		
1(c)	B1 When $x = \sqrt{3}$, $y = \frac{1}{2}$ M1 A1 Normal: $y - \frac{1}{2} = \frac{8}{\sqrt{3}} (x - \sqrt{3})$	3		for $y = \frac{1}{2}$ M1 Dep on M1 in part (a). An equation of the normal using <i>their</i> normal gradient, $\sqrt{3}$ and <i>their</i> y A1 allow unsimplified		
						[Total: 6]

2 Without using a calculator, express $\frac{1}{2}$ where *p* and *q* are integers.

$$\frac{\left(\sqrt{5}-3\right)^2}{\sqrt{5}+1}$$
 in the form of $p\sqrt{5}+q$,

Question Answer Marks **AO Element** Notes Guidan Close 1 $M1(\sqrt{5}-3)^2 = 5 + 9 - 2(3)\sqrt{5}$ 4 Attempts to rationalise or **M1** $\frac{their(14-6\sqrt{5})}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1}$ forms a pair of simultaneous equations c.g. 5p + q = 14, p + q = -6Ma M1 multiplies out; numerator $\frac{their \left(14\sqrt{5} - 30 - 14 + 6\sqrt{5}\right)}{5 - 1}$ must have at least 3 terms; condone one sign error in numerator; denominator may be 4 or $5 - \sqrt{5} + \sqrt{5} - 1$ or solves their simultaneous equations to find one unknown or p = 5, q = -11A1 $5\sqrt{5} - 11$

[5]

Question	Answer	Marks	AO Element	Notes	Guidance
1	B1 $k^2 - 4(k-1)(-k)$ oe M1 $k(5k-4)$	4			
	A1 Correct critical values 0, 0.8 oe			Mark scheme	
	A1 $k < 0, k > 0.8$ oe			FT <i>their</i> critical values provided <i>their</i> $ak^2 + bk + c > 0$ has positive <i>a</i> and there are 2 values; mark final answer If B1 M0 allow SC1 for a final answer of $k > 0.8$ oe	

4 Given that $4x^4 - 12x^3 - b^2x^2 - 7bx - 2$ is exactly divisible by 2x + b,

(i) show that
$$3b^3 + 7b^2 - 4 = 0$$
, [2]
 $2x + b = 0$
 $2x - b$
 $x = -\frac{b}{2}$
 $4\left(-\frac{b}{3}\right) - b\left(-\frac{b}{2}\right)^3 - b^2\left(-\frac{b}{2}\right)^2 - 7b\left(-\frac{b}{2}\right) - 2 = 0$
 $2\left(\frac{b}{4}\right) + \frac{12}{16}\left(\frac{b^3}{8}\right) - b^2\left(\frac{b^2}{4}\right) + \frac{7b^2}{2} - 2 = 0$
 $2x\left(\frac{b^4}{16} + \frac{3b^3}{2} - \frac{b^4}{4} + \frac{7b^2}{2} - 2 = 0\right) \times 2$
 $3b^3 + 7b^2 - 4 = 0$ Mam

(ii) find the possible values of *b*.

5 The points A and B have coordinates (p, 3) and (1, 4) respectively and the line L has equation

3x + y = 2.

(a) Given that the gradient of AB is $\frac{1}{3}$, find the value of p.	[2]
(b) Show that L is the perpendicular bisector of AB.	[3]
(c) Given that $C(q, -10)$ lies on L, find the value of q.	[1]
(d) Find the area of triangle <i>ABC</i> .	[2]

Question	Answer	Marks	AO Element	Notes	Guidan
1(a)	M1 $\frac{4-3}{1-p} = \frac{1}{3}$ oe	2		ALT uses $y = mx + c$ with <i>A</i> and <i>B</i> as far as an equation in <i>p</i> only	
	A1 -2				
1(b)	Method 1	3			
	B1 Finds midpoint <i>AB</i> $\left(\frac{their p+1}{2}, \frac{3+4}{2}\right)$			FT their p	
	B1 Verifies (-0.5, 3.5) is on L				
	B1 $y = -3x + 2$ therefore $m = -3$				
	oe and $\frac{1}{3} \times -3 = -1$				
	Method 2				
	B1 Finds midpoint <i>AB</i> $\left(\frac{\text{their } p+1}{2}, \frac{3+4}{2}\right)$			FT their p	
	B1 $\frac{1}{3} \times -3 = 1$ or				
	B1 $y - 3.5 = -3(x + 0.5)$ and completion to $y = -3x + 2$			Mark scheme	
1(c)	B1 q = 4	1			

(d)
$$A = \frac{1}{2} \left[\frac{-2}{3} + \frac{1}{4} - \frac{-2}{3} \right]$$

 $A = \frac{1}{2} \left[\frac{-2}{3} + \frac{1}{4} - \frac{-2}{3} \right]$
 $A = \frac{1}{2} \left[\frac{-8}{-10 + 12} - \frac{(3 + 110 + 20)}{-(3 + 110 + 20)} \right]$
 $= \frac{1}{2} \left[\frac{-45}{-45} \right] = \frac{22.5}{54} \text{ mils}$

6 Show that

(a)
$$\frac{\csc \theta - \cot \theta}{\sin \theta} = \frac{1}{1 + \cos \theta}$$
. [4]

Question	Answer	Marks	AO Element	Notes	Guidan	Close
1(a)	$\mathbf{M2} \ \frac{1}{\sin\theta} \left(\frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta} \right)$	4		$\frac{\mathbf{M}\mathbf{I} \text{ for either}}{\frac{\operatorname{cosec} \theta - \operatorname{cot} \theta}{\sin \theta}} = \frac{1}{\frac{1}{\sin \theta}} \left(\operatorname{cosec} \theta - \frac{\cos \theta}{\sin \theta}\right)$ or $\frac{\operatorname{cosec} \theta - \operatorname{cot} \theta}{\sin \theta} = \frac{1}{\frac{1}{\sin \theta}} \left(\frac{1}{\sin \theta} - \operatorname{cot} \theta\right)$		
	$\mathbf{M1} \frac{1 - \cos \theta}{1 - \cos^2 \theta}$ $\mathbf{A1}$ $\frac{1 - \cos \theta}{(1 - \cos \theta) (1 + \cos \theta)}$ $= \frac{1}{1 + \cos \theta}$					

(b)
$$(1 + \sec \theta) (\csc \theta - \cot \theta) = \tan \theta$$
.

4 [4] $\left(1 + \frac{1}{\cos \theta}\right)\left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right) \Rightarrow \frac{1 - \cos^2 \theta}{\cos \theta \sin \theta}$ M1 M1 $1 - \cos^2 \theta \equiv \sin^2 \theta$ Must be useful use of Pythagoras B1 A1

[4]

Question	Answer	Marks	AO Element	Notes	Guidance
1	B1 $6(1 - \cos^2 x) - 13 \cos x = 1$ oe M1 Solves or factorises <i>their</i> 3-term quadratic A2 70.5 and 289.5	4		with no extras in range A1 for either, ignoring extras in range	

8 Solve.

•

(a)
$$1 + lg (8 - x) = lg (3x + 2)$$

 $lg 10 + lg (8 - w) = lg (3x + 2)$
 $lg 10 (8 - w) = lg (3x + 2)$
 $20 - 10w = 3w + 2$
 $78 = -13w$
 $N = 16$
(4)

(b)
$$\log_4(3y^2 - 10) = 2\log_4 y - 1) + \frac{1}{2}$$

Question	Answer	Marks	AO Element	Notes	Guidan	Clos
1	Method 1	5			l	
	B1			use of power rule		
	$\log_4 (3y^2 - 10)$					
	$= \log_4 (y-1)^2 + \frac{1}{2}$					
	B1 $\log_4 \frac{3y^2 - 10}{(y-1)^2} = \frac{1}{2}$			DepB1 for use of division rule		
				for $\frac{1}{2} = \log_4 2$		
	B1 $\frac{3y^2 - 10}{(y-1)^2} = 2$			$104 \frac{1}{2} = 10g_4 z$		
	M1 $y^2 + 4y - 12 = 0$			Den en Gestione Denseles		
	A1 $y = 2$ only			Dep on first two B marks simplification to a three		
				term quadratic.		
	Method 2					
	B1					
	$\log_4 (3y^2 - 10)$			use of power rule		
	$= \log_4 (y-1)^2 + \frac{1}{2}$,		
	B1 $\log_4 (3y^2 - 10)$			for log ₄ 2		
	$= \log_4 (y - 1)^2 + \log_4 2$					
	B1 $3y^2 - 10 = 2(y - 1)^2$			Dep on first B1 use of the multiplication rule		
				indiapheuton rute		

Question	Answer	Marks	AO Element	Notes	Guidan	Clos
	M1 $y^2 + 4y - 12 = 0$ A1 $y = 2$ only			Dep on first and third B marks. simplification to a 3 term quadratic	l	

The diagram shows a sector, AOB, of a circle centre O, radius 12 cm. Angle AOB = 0.9 radians. The point C lies on OA such that OC = CB.

(a) Show that $OC = 9.65$ cm correct to 3 significant figures.	[2]
--	-----

[3]

[3]

- (b) Find the perimeter of the shaded region.
- (c) Calculate the area of the shaded region.

Question	Answer	Marks	AO Element	Notes	Guidance
1(a)	$\cos 0.9 = \frac{6}{OC} \text{ or}$ $\frac{OC}{\sin 0.9} = \frac{12}{\sin (\pi - 1.8)}$	M1		for correct use of cosine, sine rule, cosine rule or any other valid method	
	$OC = \frac{6}{\cos 0.9} = 9.652$ or $OC = \frac{12\sin 0.9}{\sin (\pi - 1.8)} = 9.652$	A1		for manipulating correctly to <i>OC</i> = 9.652(35) Must have 4th figure (or more) for rounding	
1(b)	0.9 × 12	B1		for arc length	
	Perimeter = (0.9×12) + 9.652 + (12 -9.652)	M1		for attempt to add the correct lengths	
	= 22.8	A1			

Question	Answer	Marks	AO Element	Notes	Guidance
1(c)	Area = $\left(\frac{1}{2} \times 12^2 \times 0.9\right) - \left(\frac{1}{2} \times 9.652^2 \operatorname{si}\right)$	$\mathbf{B2}$ n (π – 1.8))		B1 for area of sector, allow unsimplified B1 for area of isosceles triangle $\frac{1}{2} (9.65 (2))^2 \sin (\pi - \frac{1}{2} (12 \times 6 \tan 0.9) \text{ or})$ $\frac{1}{2} (12 \times 9.65 (2) \times \sin (\pi - 1))$ allow unsimplified.	
	64.8 - 45.36 = 19.4 to 19.5 Alternative solution: $\frac{1}{2} (12 - 9.652) \times 9.652 \times \sin 1.8$ (B1) $\frac{1}{2} 12^2 (0.9 - \sin 0.9) (B1)$ 11.04 + 8.40 Area = 19.4 to 19.5 (B1)	B1		for answer in range 19.4 to 19.5 B1 for area of triangle <i>ACB</i> , unsimplified B1 for area of segment, unsimplified B1 for answer in range 19.4 to 19.5	
	1		1	1	[Total: 8

(a) Find, in terms of **p** and **r**, in their simplest forms,

 \overrightarrow{OQ} (i) \overrightarrow{PR} , (ii)

10

- $\overrightarrow{PL},$ (iii)
- (iv) The position vector of *M*.

(**b**) *PLS* is a straight line and $PS = \frac{3}{2}PL$. Find, in terms of \mathbf{p} and/or \mathbf{r} , in their simplest forms,

(i)
$$\overrightarrow{PS}$$
 $\overrightarrow{PS} = \overrightarrow{2}(\overrightarrow{P} + \overrightarrow{3}\overrightarrow{Y})$
(ii) \overrightarrow{QS} $\overrightarrow{OS} = \overrightarrow{DP} + \overrightarrow{RS}$
 $= \cancel{A} + \overrightarrow{3} + \cancel{A}$

11 CHOOSE/ANSWER ONLY 1

EITHER

It is given that $y = (x^2 + 1)(2x - 3)^{\frac{1}{2}}$.

(a) Show that
$$\frac{dy}{dx} = \frac{Px^2 + Qx + 1}{(2x-3)^{\frac{1}{2}}}$$
, where *P* and *Q* are integers. [5]

Question	Answer	Marks	AO Element	Notes	Guidan	Close
1(a)	$\frac{\mathbf{MI B1 A1}}{\frac{dy}{dx}} = (x^2 + 1)(2x - 3)^{-\frac{1}{2}}$ Mark scheme			M1 for differentiation of a product		
				B1 for $\frac{d}{dx} (2x-3)^{\frac{1}{2}}$		
				$= \frac{1}{2} \times 2(2x-3)^{-\frac{1}{2}}$ oe		
				A1 all else correct i.e.		
				$\frac{dy}{dx} = (x^2 + 1)f(x) + 2x(2x - 3)^{\frac{1}{2}}$		
				$+2x(2x-3)^{\frac{1}{2}}$		
	м1			correctly taking out a		
	$=(2x-3)^{-\frac{1}{2}}\left(x^2+1+2x\left(2x-3\right)\right)$			factor of $(2x-3)^{-\frac{1}{2}}$ or correctly using		
				$(2x-3)^{\frac{1}{2}}$ as denominator		
	$\mathbf{A1} = \frac{5x^2 - 6x + 1}{(2x - 3)^{\frac{1}{2}}}$			action mater		

(b) Hence find the equation of the normal to the curve $y = (x^2 + 1)(2x - 3)^{\frac{1}{2}}$ at the point x = 2, giving your answer in the form ax + by + c = 0, where a, b, and c are integers. [4]

Question	Answer	Marks	AO Element	Notes	Guidan	Cl
1(b)	B1 When $x = 2$, $y = 5$ M1 $\frac{dy}{dx} = 9$, so gradient of normal $= -\frac{1}{9}$ M1 Equation of normal $y - 5 = -\frac{1}{9}(x - 2)$ A1 $x + 9y - 47 = 0$ or -x - 9y + 47 = 0	4		substitution to obtain gradient and correct method for gradient of normal DepM1 for equation of normal Must be in this form	ļ	

A closed cylinder has base radius r, height h and volume V. It is given that the total surface area of the cylinder is 600π and that V, r and h can vary.

[3] [5]

- (a) Show that $V = 300\pi r \pi r^3$.
- (b) Find the stationary value of V and determine its nature.

Question	Answer	Marks	AO Element	Notes	Guida	Clos
1(a)	Method 1	3			l	0.05
	$\mathbf{B1}\ 600\pi=2\pi r^2+2\pi rh$					
	$\mathbf{M1}\ h = \frac{600\pi - 2\pi r^2}{2\pi r}$			making h subject from a two term expression for SA.		
	$\mathbf{A1} \ V = \pi r^2 h$ $V = \pi r^2 \left(\frac{600\pi - 2\pi r^2}{2\pi r} \right)$			correct substitution and manipulation to obtain		
	$V = \pi r^2 \left(\frac{300}{r} - r\right)$			given answer		
	$V = 300\pi r - \pi r^3$					
	Method 2					
	$\mathbf{B1}\ 600\pi=2\pi r^2+2\pi rh$					
	M1 600 $\pi r = 2\pi r^3 + 2\pi r^2 h$			multiplying both sides by		
	A1 $\frac{600\pi r - 2\pi r^3}{2} = \pi r^2 h$			r correct manipulation to		
	$V = \pi r^2 h$ $V = 300\pi r - \pi r^3$			obtain $\pi r^2 h$		

(b)

 $V = 300\pi - \pi r^{2}$ $V' = -6\pi r^{2}$ $V' = -6\pi r^{2}$ $300\pi - 3\pi r^{2} = 0$ $300\pi - 3\pi r^{2}$ $r = -6\pi r^{2}$ $r = -6\pi r^{2}$ $V' = -6\pi r^{2}$

OR